

TES H₂O Comparisons: AMSR-E, AIRS, MLS

A. Eldering and the TES team September 2005

Outline

- Dataset & analysis
- Total water vapor comparison with AMSR-E
- TES-AIRS water vapor comparisons
- Latitudinal dependence of statistics
- TES-MLS water vapor comparisons
- Conclusions

The data sets

· TES

- Global surveys
- Step and stares
- Removed data with radiance residual RMS larger than 1.4 or radiance residual mean greater than 0.1

AMSR-E

 V4 total water vapor product

AIRS data

- Closest match to TES, but note that retrievals are on 45km diameter footprint
- Used onlyQA_TEMP_BOT =0
- Using v4.0

MLS data

- V1.51
- Did not apply QA screening

The analysis

- Maps of total water and histograms of differences
- Scatterplots for each layer water
- Histograms and statistics of the differences
- Plots of bias and rms as a function of pressure

AMSR-E

- TES is about 10% drier than AMSR-E total water vapor column.
- Differences are not latitudinally dependent.
- Similar statistics vs AIRS total water vapor.

Eldering - Aura Validation - Sept2005

AIRS & TES Comparisons

- Comparisons:
 - Integrated TES water vapor profiles to make a layer water quantity like AIRS 28 layer product
- Caveats:
 - Footprint:
 - AIRS retrievals are on a group of 9 AIRS footprints which are captured in an AMSU footprint - 45km diameter circle
 - TES retrieval is on 5km by 8km footprint

- Retrievals:
 - AIRS applies cloud-clearing and then a complex cascade of retrieval steps, including tuning
 - Different initial guesses, AIRS applies trapezoids to set the retrieval grid
 - AIRS incorporates microwave sounder measurements in retrieval
- Bottom line: I don't try to account for these differences, just note that they will impact comparisons

les

AIRS v4 vs sondes

- Validation of AIRS version 4 retrievals using ARM TWP RH90 data scaled by MWR.
- Left upper panel: 1 km layer temperature differences (AIRS-ARM);
- Left lower panel: percent difference in 2 km layer water vapor amounts (100(AIRS-ARM)/ARM);
- Right panels: yields using different quality constraints.

Eldering - Aura Validation

SGP

- Water vapor biases similar to TWP
- Larger rms
 differences at SGP
 due to weather
 conditions
- Analysis courtesy of Dave Tobin

Layer by layer analysis

- Most of column difference explained by near surface layers
- Mean difference are:
 -10%, -18%, and -17%
 at 1000, 925, and
 800 mb.
- Standard deviation is about 20% at all these levels.

DIFF (x-y) LAYER PRECIP WATER

Eldering - Aura V

middle layers

- 700, 600, and
 500mb layers, mean differences of -23%,
 -24%, and -10%
- Standard deviation close to 40%
- Histogram of differences is skewed

DIFF (x-v) LAYER PRECIP WATER

POINTS = 1686

Eldering - Aura \ 8

highest altitudes

- TES becomes wetter than AIRS at these layers - 24% mean difference at 300mb.
- See a lot of scatter at low water vapor concentrations
- AIRS is about 10% drier than sondes at these altitudes.

DIFF (x-y) LAYER PRECIP WATER

POINTS = 1688 EXTREMA = [-0.6, 1.5]

RMS = 0.0870980

MEAN = -0.0171291

MEDIAN - -0.00537972

STD. DEV. = 0.0854224

Eldering - Aura V

밀

10.000

A summary of statistics (GS)

Mean profiles

TES - AIRS

Bias in green ([TES-AIRS]/TES), rms differences in black

Summary stats for step and stares

Similar statistics for special observations

20S-

20N

555

20-40

560

Latitudinal dependence?

Overall characteristics of bias show little latitudinal dependence - bias becomes larger near colder surfaces

40-60

400

Difference vs optical depth

- ·Bias in water vapor is not correlated to cloud optical depth or fraction
- ·This holds true at all the layers examined

Eldering -

TES and MLS

- MLS data unscreened
- TES 7% wetter than MLS at 316mb
- TES 30% wet at 215mb
- TES 7% wet at 146
- Horizontal inhomogenity as well as vertical sensitivity contribute to differences.

Eldering - Aura V

Conclusions

- TES water vapor column is about 10% drier then AMSR-E and AIRS.
- TES drier than AIRS near from 900 to 500mb, TES is wetter than AIRS from 300-100mb.
- Statistics are similar at all latitudes, for global surveys and special observations.

- MLS comparison consistent with AIRS comparisons.
- AIRS and AMSR-E incorporate microwave sounder information may explain column and near surface differences.
- Will compare TES to operational sondes to explore this issue.

Backup slides

2147 versus AIRS v3(L) and v4 (R)

Since AIRS gets drier in upper trop in V4, bias becomes larger.

TES Averaging kernals - water

 TES loses sensitivity above 200mb, impacted by clouds

TES Averaging kernals - temperature

Sensitivity throughout the atmosphere

